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Abstract
There are many algorithms to compute an upperbound, a lowerbound

or the exact treewidth of a graph. We have implemented a lot of upper-
bound and lowerbound heuristics and two exact algorithms (a Dynamic
Programming and a Branch and Bound algorithm). This report com-
pares the different kind of algorithms and shows that some algorithms are
preferred.

From our results with the lowerbound algorithms we can conclude that
the Least-C variant for Maximum Minimum Degree almost dominates
the other algorithms. For the upperbounds, we conclude that Greedy-
FillIn is best. TreewidthDP is quite fast on most of the tested graphs,
but runs out of memory on large graphs. If TreewidthDP can not run
with the available amount of memory one could use QuickBB, which is
slower, but uses less memory.

We investigated the effects of the Memorization method on QuickBB
suggested by Van Hoesel and found that it improved the algorithm with
at least factor 15.

1 Introduction

Many NP-hard problems can be solved in polynomial time when the treewidth
is bounded by a constant. Therefore, the need arises for fast ways to compute
or approximate the treewidth and the matching tree decomposition. Unfor-
tunately, Arnborg et al [1] proved that determining whether a graph G has a
treewidth of at most k is NP-complete. There are heuristics for finding upper-
bounds and lowerbounds on the treewidth of a graph. And there are several
(expensive) algorithms that compute the exact treewidth. However, it is not
really clear which algorithm performs best.

To this end, we have written an experimentation framework to perform mea-
surements on different algorithms. And we implemented a lot of algorithms
which we compare in this report. The software, the LibTW library, is available
under the LGPL on http://www.treewidth.com.

This report is organized as follows. In Section 2, we describe the experi-
mental setup and something about the framework. A comparison between the
different heuristics, both upperbound and lowerbound, can be found in Section
3. The results of experiments on and a comparison between exact algorithms
are in Section 4. In section 5 we conclude with describing some improvements
that can be made in the future.
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2 Experimental setup

We ran our experiments with one test configuration: CentOS 4.4 (Linux) on a
Dell Optiplex GX620. The machine has an Intel Pentium D 3.0 GHz Dual core
CPU and 1024 MB RAM. Note that all implementations are single-threaded so
we only use one core of the CPU. All algorithms were compiled and run with
Sun Java 1.5.0 03.

3 Heuristics

Computing the treewidth of a graph is very expensive. This means that heuris-
tics can be very useful. For example because a bound on the treewidth might
be good enough, but also because they can be used to significantly speed up
exact algorithms.

Another interesting situation arises when the lowerbounds and upperbounds
are so good that they are equal. This seems to happen quite often on proba-
bilistic networks: on 27 of the 58 graphs we tested for this some lowerbound
was equal to some upperbound.

3.1 Lowerbounds

We have implemented several lowerbound algorithms, most of them with several
variants. The basic list is as follows.

• Minimum Degree: the minimum degree over all vertices.

• Ramachandramurthi [7], also based on vertex degrees, but slightly smarter.

• Maximum Cardinality Search [2], based on triangulation algorithms.

• Maximum Minimum Degree [6], based on removing vertices.

• Minor-Min-Width [5], based on edge contractions.

Most of these algorithms are not entirely specific. Maximum Cardinality
Search, for example, repeatedly selects a vertex of maximum weight and then
changes some weights. But at any time there may be several vertices with the
maximum weight. In particular, all vertices start out with weight zero and the
result of the algorithm can vary wildly based on these choices. It is too expensive
to branch on all such possibilities, but branching only on the first vertex to use
gives nice results: it is not very expensive and, while it may miss the best value,
it will often find a good value. We call this the All-Start variant.

All lowerbounds run pretty fast. For this reason we do not report on their
runtimes; instead, we focus solely on the quality of the results. See Figures
1 and 2 for our results. (The raw data can be found in appendix A.) First
of all, notice that the All-Start variants perform significantly better than
the ordinary versions of the same algorithm. Also notice that the –Least-C
and MinorMinWidth algorithms perform significantly better than any of the
other algorithms. Because their runtime performance is similar to the others,
we recommend always using one or both of these.
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Figure 1: Lowerbounds: fraction of the actual treewidth. The bar gives the
median value, the extensions are to first and third quartile. These results are
for 31 assorted graphs from the TOL repository.

Figure 2: Lowerbounds: fraction of the best lowerbound found. The bar gives
the median value, the extensions are to first and third quartile. These results
are for 59 probabilistic networks from the TOL repository.

3



Figure 3: Upperbounds: fraction of the best upperbound found. The bar gives
the median value, the extensions are to first and third quartile. These results
are for 59 probabilistic networks from the TOL repository.

3.2 Upperbounds

The results from our upperbound implementations can be seen in Figure 3.
(Again, the raw data can be found in appendix A.) For the same reasons as
with the lowerbounds, we did not do runtime measurements.

Notice that GreedyDegree and GreedyFillIn are clearly the best. Actu-
ally, they were always at least as good as any of the others on the 58 probabilistic
networks we tested on. On most graphs, GreedyDegree and GreedyFillIn
give the same answer: this happened on 48 of the 58 test graphs. Sometimes
–FillIn is better (this happened on the ten other graphs). It has occasionally
happened that –Degree was better, but this didn’t happen on our test graphs.

So again we have a clear winner: use GreedyFillIn.

4 Exact algorithms

There are several algorithms to compute the exact treewidth of a graph. We have
implemented two kinds of exact algorithms, namely a Dynamic Programming
algorithm (TreewidthDP) and a Branch and Bound algorithm (QuickBB).

4.1 TreewidthDP

As shown by Bodlaender et al. [4] treewidth can be seen as a Linear Ordering
Problem. A linear ordering (permutation) defines a triangulation of the graph
that has this ordering as a perfect elimination scheme. The triangulation with
respect to a permutation π of G is built as follows: first, set G0 = G, and then
for i = 1 to n, Gi is obtained from Gi−1 by adding an edge between each pair
of non adjacent higher numbered neighbors of π−1(i). One can observe that the
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resulting graph H = Gn is chordal, has π as perfect elimination scheme, and
contains G as subgraph.

The entries in the DP-table are the lowest treewidth computed so far when
starting the permutation with a certain subset of the vertices. These values
must be calculated with increasing size of the subset. The recursive formula for
computing the treewidth is stated below. In this formula, S is a subset of the
vertices V in G.

TW (S) = minv∈S max{ TW (S − {v}), |Q(S − {v}, v)| }

The treewidth of the whole graph is TW (V ). The Q-function is defined as
follows.

QG(S, v) = |{w ∈ V −S−{v}| there is a path from v to w in G[S∪{v, w}]}|

For more detailed information, see [4].
In addition to the straightforward implementation, we’ve added two extras:

upperbound and clique.

4.1.1 Implementation issues

By checking if a permutation so far yields a higher or equal treewidth than a
known upperbound, we can skip this permutation because it will never lead to
an improvement of the treewidth. The results of Bodlaender et al. [4] show that
this significantly improves the running time and memory usage of the dynamic
programming algorithm. During our implementation of this algorithm we also
saw that this makes a lot of difference. If no upperbound is given, the algorithm
starts with the trivial upperbound of n − 1.

As proved by Bodlaender et al. [4], for all cliques in the graph there always
exists a permutation with optimal treewidth with the vertices of that clique
as the last vertices to be eliminated. This means that we do not consider the
vertices in a clique while DP-ing for the permutation.

For this to be as effective as possible, we choose the maximum clique. Finding
the maximum clique is NP-hard, but for the graphs we are working on this
can be computed very fast. We implemented this with a simple backtracking
algorithm.

We’ve chosen to represent the subsets as BitSets. This is very efficient. All
BitSets and the computed treewidth for that set are stored in a HashMap. That
way we can find them in constant time. As we only need the computed treewidth
of sets of size 1 smaller than the size of the current set, we can forget smaller
sets to free up much needed memory.

4.1.2 Computational results

We have tested our implementation of the dynamic programming algorithm
with our standard test configuration (see section 2). The results are displayed
in Table 1. The upperbound was computed using the GreedyFillIn algorithm.
The column CPU denotes the average running time over 10 runs, in milliseconds.
However, the CPU times for TOL are not averages; we only ran it once and it
reports the running time with a precision of 10 ms. The Mem column denotes the
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memory usage in megabytes (rounded up). TOL computes this itself and for our
implementation we did binary search on the minimum amount of heap memory
the virtual machine required to complete the algorithm. This means that the
memory usage reported is the absolute minimum needed by our implementation;
giving the virtual machine more heap space might improve performance by
stressing the garbage collector less.

On most graphs we tested the algorithm with and without Bodlaender’s
clique trick. We did not run without cliques on graphs that already swapped
out or took a long time to compute or used a lot of memory. Where there is
‘swapped out,’ the operating system started using the hard disk as memory and
CPU usage dropped to 1%. We then stopped the experiment.

On most of the graphs, the TOL implementation is somewhat faster (average
ratio of 1.43), but on the queen7 7 graph, our implementation is a lot faster.
The implementations differ in a lot of details and a part of the performance
difference can be explained by the different programming language. TOL was
written in C++ and our implementation in Java.

Our implementation sometimes uses more memory than the implementation
in TOL. This is also due to implementation details. However on the queen7 7
graph, our implementation could DP with 49 megabytes of memory and TOL
swapped out on our machine with 1 gigabyte of memory.

Graph LibTW TOL
Name |V | |E| TW UB Clique CPU Mem CPU Mem

alarm 37 65 4 4 5 533412 377 441840 277

mainuk 48 198 7 7
unused 62556 33 14530 7

8 24066 17 12280 7

myciel3 11 20 5 5
unused 5 1 0 2

2 5 1 0 2

myciel4 23 71 10 11
unused 1325 1 2280 7

2 604 1 1700 4
myciel5 47 236 19 21 2 swapped out swapped out

oesoca+-pp 14 75 11 11
unused 3 1 0 2

9 5 1 0 2

oow-trad 33 72 6 6
unused 112741 137 158610 101

4 16007 23 20240 19

pathfinder-pp 12 43 6 6
unused 2 1 0 2

6 3 1 0 2

queen5 5 25 160 18 18
unused 67 1 50 2

5 24 1 20 2

queen6 6 36 290 25 26
unused 2518 3 2180 3

6 829 1 700 2

queen7 7 49 476 35 37
unused 630109 261 swapped out

7 97894 49 swapped out

ship-ship-pp 30 77 8 8
unused 366979 271 215470 173

4 71745 77 49190 46

water 32 123 10 10
unused 17869 13 20050 13

6 9573 11 2840 4

Table 1: Computational results TreewidthDP
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4.2 QuickBB

The QuickBB algorithm proposed by Gogate and Dechter [5] is a Branch and
Bound method for computing treewidth. The algorithm performs a search over
permutations of the vertices.

The lowerbound algorithm used with QuickBB is the MinorMinWidth
algorithm (as proposed in [5]). We have implemented a version of the Mi-
norMinWidth algorithm which is optimized for use with QuickBB.

Using an upperbound at the beginning of the algorithm prevents the algo-
rithm from doing a lot of work: if we can already conclude that upperbound
is equal to lowerbound, we know the treewidth. Even if we are not that lucky,
a good upperbound will always be useful. We have experimented with the
GreedyDegree and the GreedyFillIn upperbound algorithms.

4.2.1 Implementation issues

Because the algorithm in its basic version is quite slow (just using MinorMin-
Width, nothing else) we have implemented a method to prevent the algorithm
from visiting equivalent nodes in the Branch and Bound tree more than once. A
node in the Branch and Bound tree represents a certain graph. By eliminating
the same vertices in a different order we end up with the same graph. This
means that Branch and Bound nodes with the same vertices represent the same
graph and will therefor return the same result. We use memorization on vertex
sets to prevent branching on equivalent nodes more than once. This comes at a
memory cost, of course, but it is quite modest.

We have also implemented the possibility to set the branching ordering for
the vertices. This ordering can be retrieved from an upperbound algorithm.

To improve the running time of the algorithm the authors suggested a
method to reduce the graph without affecting the treewidth. The method to
reduce the graph is proposed by Bodlaender et al. [3] and is called ‘the simpli-
cial vertex rule’ and ‘the almost simplicial vertex rule’. In our implementation
it is recommended to check only at the first step, because checking if a vertex
is (almost) simplicial is quite computationally expensive.

4.2.2 Computational results

We have tested our implementation of QuickBB on several graphs, with dif-
ferent configurations. The results are shown in Table 2.

For some graphs (alarm, miles250, pathfinder, mainuk, mainuk-pp) we found
already at the first step an upperbound equal to a lowerbound. Those graphs
are not included in the result list, because they do not give much information
about the performance of our implementation. Gogate and Dechter did report
some results where the upperbound was equal to the lowerbound and where it
still took them over a minute to compute the treewidth. This is remarkable,
because if we know that the upperbound equals the lowerbound, we immediately
know the exact treewidth.

From the computational results we can conclude that setting a branching
order for the vertices is not very useful in our implementation. However, when
testing with the implementation of Gogate & Dechter it actually makes quite a
difference.
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The check for simplicial vertices does not improve the running time of the
algorithm with our implementation, even though it quite often finds simplicial
vertices and reduces the graph. Therefore the check for simplicial vertices is
probably useful on some graphs and because it is not expensive it is recom-
mended to do it at least at the first step.

The check for almost simplicial vertices is quite expensive if we do it in every
branching node. The number of almost simplicial vertices found is often zero,
so checking for almost simplicial vertices is not very useful on the tested graphs,
but can probably be useful on a graph with a lot of almost simplicial vertices.

Preventing the algorithm from exploring Branch and Bound nodes it already
explored seems to be very useful. During the implementation we already noticed
it made quite a difference. We have tested this on 2 graphs (anna-pp and
queen5 5) and it speeds up the algorithm by at least factor 15. The number
of stored and skipped nodes can be found in Table 2: columns ‘Created’ and
‘Skipped.’

We also ran the implementation of Gogate and Dechter on the same system
and included their results also in Table 2. The first column (Time) contains the
result of running without any options. The second column contains the result
of running the algorithm with the options -lb and -min-fill-ordering. The
third column contains the results reported in [5]. Unfortunately we often did
not even get close to the running times they achieve. The running times we
achieved with their implementation is sometimes as much as times faster then
they reported in [5] (on comparable systems).

The difference between their implementation and ours is caused by several
factors: we used Java instead of C++ and they’ve implemented more ideas to
reduce the graph while running the algorithm.

4.3 Comparison of TreewidthDP and QuickBB

So, which one is better: TreewidthDP or QuickBB? The answer is not that
simple. QuickBB can handle much larger graphs and uses less memory than
TreewidthDP, but TreewidthDP is much faster. The processing time and
memory usage of both QuickBB and TreewidthDP heavily depend on the
quality of the computed lowerbound and upperbound and on the graph itself.

If it does not run out of memory you will prefer TreewidthDP, but as
noted above, its memory usage is hard to predict. On the graphs we have
tested on we were able to handle graphs with about 40 to 50 vertices on our
machine with 1 GB of memory.

5 Further work

• Multi-threading will become much more important in the future. (Re-
cently Intel predicted that within 5 years we would have processors with
as many as 80 cores.) Several algorithms, QuickBB and TreewidthDP
in particular, could benefit enormously from using more cores. But this
does require a multi-threaded implementation and doing this well is non-
trivial.

• Another idea not yet used is to include the clique trick in the QuickBB
algorithm. We think that will lead to a substantial improvement.
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• In some graphs of practical problems, for example the queen graphs, there
is a lot of symmetry. Probably the running time and memory usage of
the QuickBB and TreewidthDP algorithms will improve if we do not
consider symmetric cases. This can be done by hand, but it would be
nicer if this is done automatically. However, this involves solving graph
automorphism kind of problems, which are hard. On the other hand, we
are already solving an NP-complete problem as preprocessing (Maximum
Clique) so perhaps this is feasible as well.

• An interesting possibility is to use the Dynamic Programming algorithm
until you run out of memory and then use the computed treewidths in a
Branch and Bound algorithm. That way you would benefit from both the
speed of Dynamic Programming and the low memory usage of Branch and
Bound.
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eil51.tsp 4 4 5 5 4 4 5 4 5 4 5 4
queen5 5 12 12 12 12 12 12 12 12 12 12 12 12
LabeledTest 3 2 3 3 2 2 3 3 3 2 3 3
celar02 9 9 10 9 9 3 10 4 4 1 9 1
queen6 6 15 15 15 15 15 15 15 15 15 15 15 15
queen7 7 18 18 20 18 18 18 19 18 18 18 18 18
barley-pp 6 5 6 6 6 4 6 5 5 4 6 4
alarm 4 4 4 4 4 2 4 2 2 1 4 1
celar07 12 11 15 13 11 6 15 6 6 1 13 1
celar09pp 7 7 7 7 7 4 3 3 3 3 7 3
myciel3 3 3 5 4 3 3 4 3 4 3 4 3
myciel4 5 5 8 8 5 5 8 5 8 4 8 4
myciel5 8 8 14 14 8 8 14 8 13 5 14 5
munin2-wpp 4 3 6 6 4 3 6 3 4 2 6 2
barley 5 5 6 6 5 4 6 4 4 2 6 2
water 8 6 8 7 7 6 8 6 7 1 7 1
david 10 10 12 11 10 6 12 6 6 1 11 1
MCSTestGraph 3 2 3 3 2 2 3 3 3 2 3 3
miles250 8 7 9 9 7 4 0 0 0 0 9 0
david-pp 11 10 12 11 11 8 12 8 11 7 1 1 7
huck 10 10 10 10 10 7 1 1 1 1 10 1
anna-pp 10 9 11 11 10 9 11 9 11 8 11 9
MCSTestGraph2 3 2 3 3 2 2 3 3 3 1 3 2
miles500 21 19 22 22 21 10 22 11 13 3 22 3
anna 8 7 11 10 7 3 0 0 0 0 10 0
pathfinder 6 5 6 6 6 2 6 2 2 1 6 1
jean 9 9 9 9 9 4 0 0 0 0 9 0
mildew 3 3 4 4 3 3 4 3 3 1 4 2
oesoca+ 9 9 9 9 9 3 9 3 3 1 9 1
oesoca 3 3 3 3 3 2 3 2 2 1 3 1
oesoca+-pp 10 9 9 10 10 9 9 9 10 7 10 10
munin1 4 4 10 8 4 2 10 3 3 1 8 1
oesoca42 3 3 3 3 3 2 3 2 2 1 3 1

Table 3: Computational results for the lowerbounds on 31 assorted graphs.
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link-wpp 6 5 11 8 5 5 11 5 6 4 8 4
mildew 3 3 4 4 3 3 4 3 3 1 4 2
munin2-pp 5 4 6 6 5 4 6 4 4 4 6 4
munin1-wpp 5 4 10 8 4 3 10 4 4 3 8 3
mildew-wpp 4 3 4 4 3 3 4 3 4 3 4 3
oesoca+-hugin 9 9 9 9 9 3 9 3 3 1 9 1
ship-ship-pp 5 4 6 6 4 4 6 4 5 4 6 4
oesoca 3 3 3 3 3 2 3 2 2 1 3 1
ship-ship 5 4 6 6 4 3 6 3 4 2 6 2
fungiuk 4 4 4 4 4 4 4 4 4 2 4 3
mainuk-pp 6 5 6 6 5 5 6 5 6 5 6 6
diabetes 4 3 4 4 3 2 4 3 3 2 4 2
oesoca+-hugin-pp 10 9 9 10 10 9 9 9 10 7 10 10
munin kgo complete 5 5 5 5 5 2 5 2 2 1 5 1
munin kgo complete-pp 5 4 4 4 5 4 4 5 4 4 4 4
munin3 4 3 7 6 4 2 7 2 2 1 6 1
pathfinder-pp 6 5 6 6 6 5 6 5 6 5 6 6
oow solo-pp 4 4 5 5 4 4 5 4 5 4 5 4
oow bas-wpp 3 3 4 4 3 3 4 3 3 3 4 3
mainuk 7 7 7 7 7 6 7 6 7 2 7 2
oow bas 3 3 4 4 3 3 4 3 3 2 4 2
pigs-pp 5 4 7 7 4 4 7 4 5 4 7 4
vsd-hugin 4 4 4 4 4 2 4 2 2 1 4 1
munin kgo complete-wpp 4 4 5 5 4 3 5 4 4 3 5 3
alarm 4 4 4 4 4 2 4 2 2 1 4 1
pathfinder 6 5 6 6 6 2 6 2 2 1 6 1
oow solo 4 3 5 5 4 3 5 4 4 1 5 2
oow solo-wpp 4 4 5 5 4 4 5 4 5 4 5 4
munin3-pp 5 4 7 7 5 4 7 5 5 4 7 4
barley 5 5 6 6 5 4 6 4 4 2 6 2
ship-ship-wpp 5 4 6 6 4 3 6 3 4 3 6 3
oow-trad-pp 4 4 5 5 4 4 5 4 5 4 5 4
wilson-hugin 3 2 3 3 2 2 3 2 2 1 3 1
oow-trad-wpp 4 3 5 5 4 3 5 4 4 3 5 3
oesoca42 3 3 3 3 3 2 3 2 2 1 3 1
link-pp 6 6 11 8 6 5 11 6 6 5 8 5
water-wpp 8 6 8 8 7 6 8 7 8 5 8 6
munin2-wpp 4 3 6 6 4 3 6 3 4 2 6 2
water 8 6 8 7 7 6 8 6 7 1 7 1
munin1-pp 5 4 10 8 4 4 10 4 5 4 8 4
oow-trad 4 3 5 5 4 3 5 4 4 2 5 2
pigs 3 3 7 6 3 2 7 2 2 2 6 2
oesoca+-hugin-wpp 9 8 9 9 9 6 9 6 8 2 9 3
munin4 5 4 7 7 4 2 7 2 2 1 7 1
weeduk 7 7 7 7 7 7 7 7 7 3 7 3
barley-wpp 5 5 6 6 5 4 6 5 5 3 6 4
munin4-pp 5 5 8 7 5 4 8 4 5 4 7 4
munin4-wpp 5 4 8 7 4 3 8 4 4 3 7 3
diabetes-pp 4 4 4 4 4 4 4 4 4 4 4 4
pigs-wpp 3 3 7 6 3 3 7 3 3 3 6 3
boblo 3 3 3 3 3 2 3 2 2 1 3 1
munin3-wpp 4 4 7 7 4 3 7 4 4 3 7 3
barley-pp 6 5 6 6 6 4 6 5 5 4 6 4
munin1 4 4 10 8 4 2 10 3 3 1 8 1
diabetes-wpp 4 3 4 4 3 3 4 3 3 3 4 3
water-pp 8 6 8 8 7 6 8 7 8 5 8 6
link 4 4 11 8 4 4 0 0 0 0 8 0
munin2 4 3 6 6 4 2 6 2 2 1 6 1
munin2 4 3 6 6 4 2 6 2 2 1 6 1

Table 4: Computational results for the lowerbounds on 59 probabilistic net-
works.
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munin kgo complete-wpp 5 5 6 6 6
munin1-pp 11 11 26 18 26
barley-pp 7 7 10 8 10
oow-trad 6 6 7 6 7
alarm 4 4 4 4 4
water-pp 11 10 11 11 11
oow solo 6 6 8 8 8
oesoca+-hugin-wpp 11 11 14 14 14
ship-ship 8 8 10 9 10
vsd-hugin 4 4 5 5 5
fungiuk 4 4 5 4 4
oesoca 3 3 7 3 7
oesoca+-hugin-pp 11 11 11 11 11
barley 7 7 8 8 8
diabetes 4 4 87 9 87
water 11 10 13 11 13
mainuk 7 7 9 8 9
munin4-pp 8 8 21 15 21
boblo 3 3 21 4 21
link 19 15 89 26 89
oow-trad-wpp 6 6 7 6 7
oow solo-wpp 6 6 7 7 7
munin1 11 11 24 22 24
munin2 7 7 16 13 16
ship-ship-wpp 8 8 10 9 10
oow-trad-pp 6 6 6 6 6
munin3 7 7 53 40 53
munin4 8 8 42 22 42
link-pp 19 15 64 26 64
oow solo-pp 7 6 7 7 7
pigs-pp 10 10 17 18 17
mildew 4 4 5 5 5
ship-ship-pp 8 8 9 9 9
barley-wpp 7 7 10 8 10
wilson-hugin 3 3 3 3 3
pathfinder 7 6 14 7 14
diabetes-wpp 4 4 91 28 91
munin3-pp 7 7 38 45 38
water-wpp 11 10 11 11 11
oow bas 4 4 5 5 5
munin kgo complete-pp 5 5 6 6 6
diabetes-pp 5 4 49 26 49
link-wpp 19 15 84 26 84
mainuk-pp 6 6 7 7 7
pigs 10 10 40 20 40
munin1-wpp 11 11 28 18 28
munin2-wpp 7 7 24 15 24
munin3-wpp 7 7 53 39 53
munin kgo complete 5 5 27 8 27
munin4-wpp 8 8 34 19 34
weeduk 7 7 7 7 7
mildew-wpp 4 4 5 5 5
munin2-pp 7 7 9 10 9
oesoca+-hugin 11 11 12 14 12
oow bas-wpp 4 4 5 5 5
pathfinder-pp 7 6 7 8 7
pigs-wpp 10 10 32 16 32
oesoca42 3 3 6 4 4

Table 5: Computational results for the upperbounds on 58 probabilistic net-
works.
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